Threshold mechanisms and site specificity in chromium(VI) carcinogenesis.

نویسنده

  • S De Flora
چکیده

Ten years have elapsed since the International Agency for Research on Cancer (IARC) evaluated the carcinogenicity of chromium and chromium compounds. Further studies performed during the last decade have provided further epidemiological, experimental and mechanistic data which support the IARC conclusions. A wealth of results indicate that, at variance with chromium(0) and chromium(III), chromium(VI) can induce a variety of genetic and related effects in vitro. The lack of carcinogenicity of chromium(0) and chromium(III) compounds in experimental animals is well established, and only a minority of animal carcinogenicity data with chromium(VI) compounds were positive (30 out of 70, i.e. 42.9%). Moreover, most positive studies used administration routes which do not mimic any human exposure and by-pass physiological defense mechanisms. Typically, positive results were only obtained at implantation sites and at the highest dose tested. Exposure to chromium(VI) has been known for more than a century to be associated with induction of cancer in humans. Carcinogenicity requires massive exposures, as is only encountered in well defined occupational settings, and is site specific, being specifically targeted to the lung and, in some cases, to the sinonasal cavity. Increased death rates for cancers at other sites, which were occasionally reported in some epidemiological studies, were almost invariably not statistically significant, and inconsistent (being counterbalanced by other studies which apparently showed decreased rates for the same cancers). As we recently quantified in human body compartments, chromium(VI) can be reduced in body fluids and non-target cells, which results in its detoxification, due to the poor ability of chromium(III) to cross cell membranes. In target cells, chromium(VI) tends to be metabolized by a network of mechanisms leading to generation of reduced chromium species and reactive oxygen species, which will result either in activation or in detoxification depending on the site of the intracellular reduction and its proximity to DNA. When introduced by the oral route, chromium(VI) is efficiently detoxified upon reduction by saliva and gastric juice, and sequestration by intestinal bacteria. If some chromium(VI) is absorbed by the intestine, it is massively reduced in the blood of the portal system and then in the liver. These mechanisms explain the lack of genotoxicity, carcinogenicity, and induction of other long-term health effects of chromium (VI) by the oral route. Within the respiratory tract, chromium(VI) is reduced in the epithelial-lining fluid, pulmonary alveolar macrophages, bronchial tree and peripheral lung parenchyma cells. Hence, lung cancer can only be induced when chromium(VI) doses overwhelm these defense mechanisms. The efficient uptake and reduction of chromium(VI) in red blood cells explains its lack of carcinogenicity at a distance from the portal of entry into the body. All experimental and epidemiological data, and the underlying mechanisms, point to the occurrence of thresholds in chromium(VI) carcinogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specificity and inducibility of the metabolic reduction of chromium(VI) mutagenicity by subcellular fractions of rat tissues.

The mutagenicity of sodium dichromate in the Ames test was decreased as a consequence of chromium(VI) reduction by tissue postmitochondrial (S-9 or S-12) fractions from untreated rats with the following rank of efficiency: liver; kidney; and lung. The effects of lung preparations were significantly enhanced following the intratracheal administration of high doses (0.25 mg/kg) of dichromate itse...

متن کامل

Gene 33/Mig6 inhibits hexavalent chromium-induced DNA damage and cell transformation in human lung epithelial cells

Hexavalent Chromium [Cr(VI)] compounds are human lung carcinogens and environmental/occupational hazards. The molecular mechanisms of Cr(VI) carcinogenesis appear to be complex and are poorly defined. In this study, we investigated the potential role of Gene 33 (ERRFI1, Mig6), a multifunctional adaptor protein, in Cr(VI)-mediated lung carcinogenesis. We show that the level of Gene 33 protein is...

متن کامل

Chromium induces a persistent activation of mitogen-activated protein kinases by a redox-sensitive mechanism in H4 rat hepatoma cells.

Chromium is an important industrial metal, an environmental pollutant, and a human carcinogen. To investigate the mechanisms of chromium-induced carcinogenesis, activation of mitogen-activated protein (MAP) kinases ERK1 and ERK2 was examined in rat hepatoma cells following exposure to hexavalent chromium (Cr(VI)). Cr(VI) was found to activate both forms of MAP kinase in a dose- and time-depende...

متن کامل

Analysis of repair and mutagenesis of chromium-induced DNA damage in yeast, mammalian cells, and transgenic mice.

Chromium (Cr) is a widespread environmental contaminant and a known human carcinogen. We have used shuttle vector systems in yeast, mammalian cells, and transgenic mice to characterize the mutational specificity and premutational DNA damage induced by Cr(VI) and its reduction intermediates in order to elucidate the mechanism by which Cr induces mutations. In the yeast system, treatment of vecto...

متن کامل

Superoxide-mediated proteasomal degradation of Bcl-2 determines cell susceptibility to Cr(VI)-induced apoptosis.

Hexavalent chromium [Cr(VI)] compounds are redox cycling environmental carcinogens that induce apoptosis as the primary mode of cell death. Defects in apoptosis regulatory mechanisms contribute to carcinogenesis induced by Cr(VI). Activation of apoptosis signaling pathways is tightly linked with the generation of reactive oxygen species (ROS). Likewise, ROS have been implicated in the regulatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Carcinogenesis

دوره 21 4  شماره 

صفحات  -

تاریخ انتشار 2000